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Abstract. Analyzing EVM bytecode is imperative because nearly 45%
of smart contracts on the Ethereum blockchain lack publicly available
source code. While type inference is pivotal for EVM bytecode analysis,
it remains unsolved because (1) current tools can only handle a subset of
Solidity expressions, and (2) they often produce imprecise results due to
unsound heuristics they employ. Furthermore, there is no comprehensive
dataset with precise ground truth for evaluating EVM type inference,
which hinders the development of new tools and the evaluation of existing
ones. Thus, we propose EVMpress, a novel bytecode analysis framework
that enables accurate type inference for Solidity expressions found in
EVM bytecode. We evaluate EVMpress on the largest-to-date dataset
of EVM bytecode containing more than 370K real-world contracts with
precise ground truth for every function and variable. Our evaluation
results show that EVMpress significantly outperforms existing state-of-
the-art tools in terms of its coverage and accuracy. We publicize our
dataset as well as our implementation of EVMpress to facilitate future
research in EVM bytecode analysis.

1 Introduction

Ethereum Virtual Machine (EVM) bytecode analysis is essential for understand-
ing the behavior of smart contracts. Developers deploy smart contracts to the
Ethereum blockchain as EVM bytecode, typically without including their source
code. Indeed, nearly 45% of the smart contracts in use do not disclose their
source code [6], highlighting the need for EVM bytecode analysis.

Type inference is a crucial step in EVM bytecode analysis as it provides
essential information about the types of Solidity expressions, such as functions
and variables. Faulty type inference can yield misleading decompiled code [28,31],
making it much harder to understand smart contracts. Also, a recent study [11]
indicates that type inference affects the readability of decompiled code.

Unfortunately, existing EVM type inference techniques remain immature in
terms of coverage and accuracy.



First, current EVM type inference techniques can only cover a subset of
Solidity expressions. For example, DeepInfer [32] can only infer types of public
functions, while VarLifter [22] can only infer types of global variables. To our
knowledge, there is no existing technique that can infer types of private functions.

Second, existing type inference techniques suffer from low accuracy due to
the unsound heuristics they employ. For instance, VarLifter [22] heuristically
considers a single path for each function to infer global variable types, leading to
an underestimated result. Gigahorse [14] employs several heuristics to identify
functions that do not follow the standard function call-return pattern, but these
heuristics are often imprecise, leading to both false positives and negatives. Due
to the imprecise function identification, Gigahorse often fails to recover types
of critical functions as our study will show.

To make matters worse, there is no high-quality dataset with precise ground
truth for EVM type inference, making rigorous evaluation difficult. Indeed, our
preliminary study reveals that approximately 31% of the contracts in the dataset
of VarLifter [22] are duplicates. Additionally, existing datasets do not provide
precise ground truth for private functions and global variables. These issues
overestimate the accuracy of existing EVM type inference techniques (see §2.2).

In this paper, we propose EVMpress to address all the aforementioned limita-
tions of existing EVM type inference techniques in a unified framework. Specifi-
cally, we present a novel design of EVM bytecode analysis framework that enables
precise type inference for various kinds of Solidity expressions including public
functions, private functions, and global variables. Furthermore, we develop a
large-scale dataset with precise ground truth to evaluate our system rigorously.

The key innovation of EVMpress is its holistic design that integrates function
identification, Control Flow Graph (CFG) recovery, and type inference into a
unified static analysis framework. Our design allows us to develop path-based
function identification, a novel function identification technique that can accu-
rately identify all kinds of functions, including public functions, private func-
tions, as well as intrinsic functions generated by the Solidity compiler. The key
insight of path-based function identification is that we can leverage a funda-
mental characteristic of functions in EVM bytecode: a function always pushes a
return address before its entry and pops it after its return, regardless of the path
it takes within the function. Therefore, we can always pinpoint a function entry
point within a single execution path assuming there is a function call in the
path. This approach allows us to accurately identify various types of functions,
thereby significantly improving the accuracy of type inference.

Additionally, we construct a large-scale dataset with precise ground truth,
consisting of 370,745 unique contracts, in order to rigorously evaluate our sys-
tem. We eliminate duplicate contracts by normalizing EVM bytecode to remove
references that can change during compilation and deployment. We also thor-
oughly build ground truth for function entry points, function types, and variable
types with compiler-generated information, such as abstract syntax tree (AST).

Our evaluation shows that EVMpress can infer types of Solidity expressions
from EVM binaries in an accurate and efficient manner. Specifically, we demon-



Table 1: Comparison of the state-of-the-art EVM bytecode analysis tools.

O
p
e
n
? Identification Type Inference

Pub.
Func.

Priv.
Func.

Glob.
Var.

Pub.
Func.

Priv.
Func.

Glob.
Var.

Neural-FEBI [15] ✓† ✓ ✓ ✗ ✗ ✗ ✗

Gigahorse [13, 14,19] ✓ ✓ ✓ ✗ ✓‡ ✗ ✗

SigRec [7] ✗ ✓ ✗ ✗ ✓‡ ✗ ✗

DeepInfer [32] ✓† ✓ ✗ ✗ ✓ ✗ ✗
VarLifter [22] ✓ ✓ ✗ ✓ ✗ ✗ ✓
EVMpress ✓ ✓ ✓ ✓ ✓ ✓ ✓

† ✓ means partially available. Neural-FEBI publicize their code and dataset, but not their model pa-
rameters. DeepInfer lacks their preprocessing module in their code release.
‡ ✓ indicates partial support, e.g., Gigahorse does not infer return types of public functions.

strate that EVMpress can recover the types of previously unhandled private func-
tions with over 96% accuracy. Notably, EVMpress finds 30% more private func-
tions than Gigahorse, while showing 2× more accurate global variable type
inference results than VarLifter. Additionally, EVMpress achieves 1.6× faster
CFG recovery performance on average than existing techniques, and up to 4×
faster on large bytecodes. Our main contributions are:

– We propose path-based function identification technique that enables accu-
rate identification of functions in EVM bytecode.

– We design and implement EVMpress, a unified EVM bytecode analysis frame-
work that incorporates path-based function identification technique.

– We present the largest-to-date dataset of EVM bytecode with precise ground
truth for function and variable types, consisting of 370,745 unique contracts.

– We publicize our tool along with our dataset to support open science4.

2 Motivation

In this section, we first discuss the limitation and scope of the current state-of-
the-art EVM bytecode analysis tools. We then review the limitation of existing
datasets for evaluating EVM bytecode analysis tools, and introduce our new
dataset. Finally, we present a preliminary study that we performed with a real-
world contract in our dataset to motivate our work.

2.1 Previous Tools

We studied five state-of-the-art EVM bytecode analysis tools: NeuralFEBI [15],
SigRec [7], DeepInfer [32], Gigahorse [13,14,19]5, and VarLifter [21]. Table 1

4 https://github.com/SoftSec-KAIST/EVMpress
5 Although Gigahorse [13], Elipmoc [14], and Shrnkr [19] are tools presented in three
different papers, they are continuous work on the same framework and share the
same codebase. Therefore, we refer to them as Gigahorse for the sake of simplicity.



Table 2: Comparison of the existing datasets.

O
p
e
n
? #

Orig.
#
Dedup.

Ground Truth

Identification Type Inference

Pub.
Func.

Priv.
Func.

Glob.
Var.

Pub.
Func.

Priv.
Func.

Glob.
Var.

Neural-FEBI [15] ✓ 39.0K 22.5K ✓ ✓ ✗ ✗ ✗ ✗
GigahorseG [13] ✗ 91.8K – – – – – – –
GigahorseE [14] ✗ 5.0K – – – – – – –
GigahorseS [19] ✗ 8.0K – – – – – – –
SigRec [7] ✗ 119.1K – – – – – – –
DeepInfer [32] ✓ 47.8K 47.8K ✓ ✗ ✗ ✓ ✗ ✗
VarLifter [21] ✓ 34.8K 23.9K ✗ ✗ ✓ ✗ ✗ ✓
EVMpress ✓ 370.7K 370.7K ✓ ✓ ✓ ✓ ✓ ✓

compares these tools in terms of their features and capabilities. The second col-
umn indicates whether tool is publicly available. Note that Neural-FEBI and
DeepInfer only partially publicize their source code or model. Columns three
to five in Table 1 indicate which Solidity expressions are identified by each tool.
Columns six to eight show whether each tool infers the types of the identified ex-
pressions. For functions, we distinguish between public and private functions. In
EVM, public functions are those declared with the external or public keyword
in Solidity. Private functions include those marked as internal or private, as
well as compiler-generated intrinsic functions. For variables, we only consider
global variables, which are stored in the storage area [29], and this is because
none of the current tools can recover the types of local variables and extracting
ground truth for local variables is challenging.

It is worth noting that none of the tools listed in Table 1 comprehensively
recovers all kinds of expression types. Neural-FEBI and Gigahorse are the only
tools that identify the locations of private functions, although they do not re-
cover their types. While most tools support recovering parameter types of public
functions, only DeepInfer can recover their return types. Rather surprisingly,
none of the existing tools can infer the types of private functions, which can
significantly limit their usability. We present the first EVM bytecode analysis
framework that recovers types for all Solidity expressions listed in the table.

2.2 Previous Datasets

Table 2 summarizes the existing datasets used by the EVM bytecode analyzers
listed in Table 1. Note that we distinguish the three datasets used by Gigahorse

according to the papers in which they were introduced with the suffixes G, E,
and S. The second column specifies dataset availability, revealing that among the
seven previously proposed datasets, only three are publicly accessible. The third
column presents the original number of contracts reported in the paper. Among
public datasets, DeepInfer’s was the largest with 47.8K contracts. The fourth
column shows the number of deduplicated contracts in each dataset obtained by
our deduplication method described in §2.3. Notably, over 30% of the contracts



in both the Neural-FEBI and VarLifter datasets were duplicates, which could
substantially distort evaluation results. The rest of the columns summarize what
kind of ground truth information is provided in each dataset. We note that none
of the publicly available datasets provides comprehensive ground truth. All these
limitations summarized in the table motivate us to build a new dataset for EVM
bytecode analysis that is (1) publicly available, (2) deduplicated, and (3) contains
comprehensive ground truth for every function and variable type.

2.3 Our Dataset

We introduce the largest-to-date dataset for EVM bytecode analysis that ad-
dresses the aforementioned limitations, following the steps outlined below.

Contract Collection We collected all Ethereum bytecode deployed up to Jan-
uary 2025, which includes 68.7M contracts. We then filtered out self-destructed
contracts and contracts with no incoming transactions to retain a meaningful
dataset. Next, we selected the contracts whose Solidity source code is available
on Etherscan [3] and can be compiled with the Solidity compiler version 0.4.11
or higher. This was because our ground truth generation process requires com-
piler versions higher than or equal to 0.4.11, the first release that introduces the
--standard-json option for emitting Abstract Syntax Trees (ASTs). Lastly, we
deduplicated the contracts that have identical EVM bytecode. Consequently, we
were able to obtain 610K contracts along with their source code.

Contract Compilation Next, we compiled the collected source code from
the previous step using the same compiler version and compiler options listed in
Etherscan to reproduce the same bytecode deployed on the Ethereum blockchain
while obtaining extra data to construct the ground truth. To obtain the ex-
tra data, we used the --standard-json option. For those compiled with the
--via-ir option, which does not emit the compiled-generated intrinsic func-
tions into the ASTs, we patched the Solidity compiler to emit them, and later
used them to generate the ground truth. This step produces the EVM bytecode,
assembly code, and ASTs for each contract.

Normalization and Deduplication Deduplicating contracts by bytecode alone
is insufficient, as some differ only in addresses or auxiliary data, which are not
relevant to the core execution logic of the contract. Thus, we further normalized
the contracts in two steps. First, we removed auxiliary data from the bytecode.
Next, we found the locations of address references in the bytecode, and zeroed
them out to ignore the differences in addresses. As a result, 48.1% of contracts
were duplicates, leaving 370K unique contracts.

Ground Truth Generation Finally, we generated the ground truth for each
contract using the EVM bytecode, assembly code, and ASTs generated by the



1 contract GovernanceRouter {
2 function transferGovernor(uint32 _domain , ...) public {
3 // ...
4 formatTransferGovernor(_domain , ...);
5 }
6 function formatTransferGovernor(uint32 _domain , ...) private {
7 clone(mustBeTransferGovernor(ref(_domain , ...)));
8 }
9 function ref (...) private returns (...) {

10 if (...) { ... }
11 else { ... }
12 }
13 function mustBeTransferGovernor (...) private returns (...) {
14 ...
15 }
16 function clone (...) private returns (...) {
17 ...
18 }
19 }

Fig. 1: Simplified source code of the GovernanceRouter contract, which is located
at address 0xfbea6d67ddd90e1f726c2622c6c42b016fdad5a7.

compiler. Our ground truth includes (1) function addresses and their signatures,
and (2) global variable locations and their types. To locate functions in the
EVM bytecode, we analyzed the assembly code, which shows annotated assembly
instructions with source code line information. Once we identified the entry point
of each function, we checked the corresponding byte offset in the bytecode to
obtain the function address. We then extracted from the corresponding AST the
function signature, which includes the parameter types as well as the return type.
We similarly identified the locations and types of global variables by analyzing
the ASTs and the EVM bytecode based on the official documentation of the
Solidity compiler [30]. Consequently, we obtained 370,745 unique contracts with
the ground truth information for every function and global variable type. To
the best of our knowledge, this is the largest dataset for EVM bytecode analysis
with comprehensive ground truth information.

2.4 Motivating Example

Can the new dataset provide new insights into the limitations of existing EVM
bytecode analysis tools? As we will show in the evaluation section §4, our dataset
reveals that the state-of-the-art EVM bytecode analysis tools exhibit signifi-
cantly low accuracy in identifying functions. For example, we found that the F1
score of Gigahorse in terms of detecting private function is only 71.0%.

Figure 1 illustrates one such example, named the GovernanceRouter con-
tract. It includes the formatTransferGovernor function (Line 6), which is
called by the transferGovernor function (Line 4). In Line 7, the format-

TransferGovernor function calls three private functions in sequence: ref, must-
BeTransferGovernor, and clone. Unfortunately, Gigahorse fails to identify the
clone function despite the simple structure of the formatTransferGovernor
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Fig. 2: EVMpress architecture.

function—no loops nor conditionals. The primary reason for this failure is that
Gigahorse requires a function entry point to be reachable from multiple call
sites, which is not the case for clone. We note that Gigahorse is prone to
such errors because it relies on declarative patterns found in the EVM bytecode
to identify functions. This limitation motivates us to develop a unified static
analysis framework for EVM bytecode that can procedurally identify functions
without relying on such patterns.

3 Design

This section presents the design of EVMpress. We first present the overall archi-
tecture of EVMpress. We then describe the details of path-based function iden-
tification. Finally, we conclude this section by illustrating the overall workflow
of EVMpress using a running example.

3.1 Overview

Figure 2 shows the overall architecture of EVMpress, which takes in an EVM
binary as input, and outputs the inferred types of functions and variables. At
a high level, EVMpress runs in four main steps. CFG Builder first identifies
functions and reconstructs the Control-Flow Graph (CFG) of each function from
the given EVM bytecode. Subsequently, Variable Identifier identifies vari-
ables used by each function and returns the locations of the identified variables
to Type Inferrer. A variable here is any recoverable high-level construct–
function parameters, return values, local variables, and global variables. Vari-
able Identifier identifies variables used by each function and returns their
locations to Type Inferrer. Type Inferrer then collects type constraints
for each identified variable and returns them to Constraint Solver. Finally,
Constraint Solver solves the constraints and infers the types of each variable
and outputs the results.

CFG Builder reconstructs the intra-procedural CFG for each function from
the given EVM bytecode. It first recursively traverses the control flow of the



EVM bytecode starting from the entry point of the contract. Every time a
jump instruction is encountered, CFG Builder consults with Function
Identifier to check if the jump instruction is a function call. This is where
our path-based function identification comes into play, which enables robust
function identification from highly optimized EVM bytecode (§3.2).

Variable Identifier analyzes every data access in the CFG and identifies lo-
cations of variables used by each function. It returns the location information
of identified variables, such as calldata, memory, and storage as well as their
addresses or offsets, to Type Inferrer.

Type Inferrer collects type hints for each identified variable to generate type
constraints. Specifically, we analyze variable access patterns by traversing
the CFG as in the classic approaches [7,20]. For instance, when a variable is
accessed by applying bit-masking operations, we can infer the bit-width of
the variable. Similarly, when a variable is used as a conditional, we can infer
that the variable is a boolean type.

Constraint Solver solves the type constraints generated by Type Inferrer
and infers the types of each variable. We use the traditional (naive) bottom-
up evaluation to saturate the constraint set [5].

3.2 Path-based Function Identification

The complexity of EVM bytecode optimization makes it challenging to identify
function entry points, especially for private functions. Recall from §2.4 that
previous approaches [13,14,19] suffer from both false positives and false negatives
when identifying function entry points as they rely on declarative heuristics that
are not robust against highly optimized EVM bytecode.

Our technique, on the other hand, leverages the invariant of a function call,
which is that there must be a function entry point in any execution path between
a return address definition and the corresponding return instruction. Suppose f
and g are two functions in a contract where f is a caller of g, and g is a complex
function containing many execution paths. Let callsite(f, g) be the program
point in f where g is called. When g returns to f using a jump instruction,
the function entry point of g is always within an execution path between the
callsite(f, g) and the return instruction of g, no matter which path in g is taken.
Therefore, we can simply investigate a single path, instead of all paths, to effi-
ciently identify the function entry point of g. Depending on the complexity of g,
our algorithm can significantly reduce the number of paths to be traversed, thus
improving the efficiency of function identification.

At a high level, path-based function identification runs on every jump in-
struction encountered while recovering the CFGs (CFG Builder in Figure 2).

1. For every jump instruction encountered, we consider it as a potential return
instruction r if there is no immediate jump target on top of the stack.

2. For each potential return instruction, we follow the use-def chain to find the
definitions of the jump target address.
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Fig. 3: CFG of the GovernanceRouter contract shown in Figure 1.

3. We then extract a random path from the definition to r and traverse it,
excluding the first basic block, to identify whether there is a block that can
be a function entry point. Specifically, a basic block in the path is a function
entry point if it does not satisfy any of the following conditions:
C1. The basic block has been identified as a return point of a function.
C2. The basic block is included in the CFG of another function.
C3. The basic block is a fall-through of another basic block.

3.3 Running Example

To illustrate how EVMpress works, let us consider the same example contract
in Figure 1. We present the corresponding CFG in Figure 3. We denote each
function in Figure 1 with fname, where name is the name of the function. Note
that we exclude the last function call (of clone) to simplify the illustration.

CFG Builder starts to analyze the given EVM bytecode. The very first step
is to identify public functions by analyzing the function dispatcher located at
the beginning of the EVM bytecode. In this example, CFG Builder identifies
the public function transferGovernor defined in Line 2 of Figure 1. It then
starts to disassemble the function to recover the basic block A of the CFG in
Figure 3. When it encounters the jump instruction in A, it checks whether there
is an immediate jump target, which comes from the same basic block, on top of
the stack. Since there is a PUSH instruction right before the jump that pushes the
address of B onto the stack, we know that this is not a returning edge. Therefore,
we continue to disassemble the basic block B and perform the same analysis until
we reach the basic block E, which does not include a push instruction before its
jump instruction. At this point, CFG Builder follows the use-def chain (the
red dotted arrow) of the jump target (a) to know that it jumps to the basic



block F . Since E does not have an immediate jump target, the jump instruction
in E is considered as a potential return instruction.

Recall from §3.2 that we now select a random path from the definition site
B to E and traverse it to identify whether there is a function entry point. Note
that we have not yet identified any function except transferGovernor, which
is a public function. Suppose we selected the path B → C → D → E. We then
traverse the path, excluding B, to check whether there is a basic block that can
be a function entry point. The first block to consider is C, which does not satisfy
any of the conditions listed in §3.2. Therefore, we identify C as a function entry
point (of the function ref) and mark all reachable basic blocks from C to E as
the CFG of the function.

Similarly, we can detect fmustBeTransferGovernor when we reach the basic block
G. In this case, the reaching definition of the jump target (b) is at the basic block
B because B pushes the address ofH onto the stack even before it makes a call to
fref. This is so-called Continuation Passing Style (CPS) function call [14], often
found in EVM bytecode. Path-based function identification gracefully handles
this case by selecting and analyzing a single path from B to G. Suppose we
selected the path B → C → D → E → F → G. Since C, D, and E satisfies
condition C2, and F satisfies condition C1, we skip them and identify G as a
function entry point. We follow the same procedure to identify all the CFGs in
the bytecode, and proceeds to the next step, which is variable identification.

Variable Identifier analyzes the CFGs of the identified functions and
identifies variables used by each function. For instance, we can easily detect
function parameters by analyzing the stack before making a function call, as
our path-based function identification can precisely identify which jump in-
struction is a function call. In this running example, Variable Identifier
detects that the function transferGovernor passes the first parameter domain

to formatTransferGovernor. Thus, it returns the corresponding stack offset of
the parameter to Type Inferrer.

Finally, Type Inferrer collects type hints for the given parameter domain

of transferGovernor. Specifically, it collects two type hints about the pa-
rameter. First, it identifies that transferGovernor computes the logical-and
of domain and a constant value, 0xffffffff (= 232 − 1), which indicates
that domain is a 32-bit number. Furthermore, it realizes that the computed
value is never sign-extended with a SIGNEXTEND instruction, which indicates
that domain is an unsigned integer. These two type hints are then passed to
Constraint Solver, which will conclude that domain is a 32-bit unsigned
integer, i.e., uint32.

3.4 Implementation

We implemented EVMpress with 10K SLoC of F#. We used B2R2 [16], a binary
analysis framework, to disassemble and lift EVM instructions, and implemented
CFG Builder as a middle-end module in B2R2. CFG Builder employs an
incremental data-flow analysis [26] to track use-def chains of stack values on-the-
fly, enabling it to identify jump targets and recognize patterns of public function



entry points. Variable Identifier uses an Static-Single Assignment (SSA)
form of the Control-Flow Graph (CFG), which CFG Builder emits, to parse
data access instructions (e.g., SLOAD, CALLDATALOAD, MLOAD) and identify vari-
able locations. Type Inferrer also operates on an SSA-formed CFG to parse
instructions that provide useful type hints (e.g., AND for bit-width, SIGNEXTEND
for signed type) and collects constraints over the variables identified by Vari-
able Identifier (e.g., HasBitWidth(x, 160), UsedAsSigned(y)). We apply
a set of rules, including memory aliasing and type inference rules, to propa-
gate constraints until no new ones can be derived for each variable, eventually
obtaining constraints that describe variable types (e.g., HasType(x, uint32)).

4 Evaluation

In this section, we evaluate EVMpress to answer the following research questions.

RQ1. How accurate is EVMpress in terms of function identification, variable
identification, and type inference?

RQ2. How does EVMpress compare with the state-of-the-art tools in terms of
function identification, variable identification, and type inference?

RQ3. Does path-based function identification enable efficient function identifi-
cation?

4.1 Experimental Setup

Comparison Targets. Recall from §2.1 that only Gigahorse [13, 14, 19] and
VarLifter [22] are fully available, although they do not support all the features
that EVMpress supports. Thus, our evaluation focuses on comparing EVMpress

with these two tools. We ran Gigahorse with the --disable inline option,
which prevents the default inlining of private functions. We found that this op-
tion improves Gigahorse’s function identification accuracy by about 10%. Par-
ticularly, we used Gigahorse commit 18ce2685 and VarLifter commit 47f9e681
for our evaluation.

Our Environment. We conduct our experiments on a server equipped with two
22-core Intel Xeon CPU E5-2699 processors and 512 GB RAM, running Ubuntu
22.04. We use 88 (= 22 × 2 × 2) virtual cores to run the tools in parallel.

4.2 RQ1: Accuracy Evaluation

To measure the accuracy of EVMpress, we ran it on our large-scale dataset in-
troduced in §2.3. The last row of Table 3 shows the results of our evaluation. For
function identification, we show precision, recall, and F1-score for both public
and private functions. For variable identification and type inference, we show
success rates.



Table 3: Comparison of function identification, variable identification, and type
inference accuracy. Bold numbers denote the best results among the tools.

Function Identification Variable Identification Type Inference

Public. Private. Public. Private.

Glob.

(%)

Public. Private.

Glob.

(%)

Prec.

(%)

Rec.

(%)

F1

(%)

Prec.

(%)

Rec.

(%)

F1

(%)

Par.

(%)

Ret.

(%)

Par.

(%)

Ret.

(%)

Par.

(%)

Ret.

(%)

Par.

(%)

Ret.

(%)

VarLifter – – – – – – – – – – 49.4 – – – – 48.6
Gigahorse 94.9 99.4 97.1 78.1 65.0 71.0 82.8 – 99.9 99.9 – 82.8 – – – –
EVMpress 99.2 99.7 99.5 96.4 95.8 96.1 99.4 97.5 98.6 99.4 94.1 96.6 94.2 96.4 97.8 88.8

Overall, EVMpress demonstrates high accuracy across all metrics, achieving
95% or higher in every case except for global variable type inference. Given that
type inference is a challenging task and there are only a few existing tools that
support it, 88.8% accuracy for global variable type inference is still a promising
result. We further discuss why EVMpress’s global variable type inference is not
as accurate as the other metrics in §4.3 when we compare the result with that
of VarLifter.

4.3 RQ2: Comparison with State-of-the-Art Tools

We compared EVMpress with the two state-of-the-art tools, Gigahorse and Var-

Lifter, in terms of function identification, variable identification, and type in-
ference as shown in Table 3. It is important to note that EVMpress is the only
tool capable of inferring the types of private functions and the return values of
public functions.

EVMpress vs. Gigahorse. EVMpress outperforms Gigahorse in all the metrics,
except for private function parameter and return value identification. Although
EVMpress shows about 99% of accuracy, Gigahorse achieves slightly higher ac-
curacy for private function parameter and return value. This is simply because
Gigahorse recovers significantly fewer private functions than EVMpress—the
recall of Gigahorse for private function identification is only 65%. As a re-
sult, Gigahorse only recovers types of the most basic private functions and
misses many highly optimized ones. This leads to a slightly higher accuracy
than EVMpress, but only because it analyzes a much smaller and simpler subset
of private functions.

For public functions, both EVMpress and Gigahorse achieved higher than
99% recall in identifying them. However, Gigahorse showed significantly lower
precision than EVMpress because it often misidentifies some intrinsic functions
as public functions. Although both tools were able to identify most of the public
functions, Gigahorse’s F1-score for identifying their parameters was only 82.8%,
while EVMpress achieved 99.4%. This is because Gigahorse relies on an external
database based on the hash of the function signature, which can lead to false
negatives if the function signature is not present in the database.



Table 4: Averaged CFG recovery time and total execution time on our dataset.

CFG Recovery Time Total Execution Time Error Rate

Gigahorse 4.5s 4.6s 0.04%
EVMpress 2.7s 8.3s 0.02%

EVMpress vs. VarLifter. EVMpress consistently outperforms VarLifter across
all metrics. In particular, EVMpress achieves nearly twice the F1-score for global
variable type recovery compared to VarLifter, which only reached 48.6% ac-
curacy. This result is rather surprising, as the accuracy of VarLifter reported
in its original paper [22] was 96.2%. There are several reasons for this discrep-
ancy. First, we manually inspected the results of VarLifter and found that
it does not recover the offset of global variables that have the same slot num-
ber. Second, VarLifter had difficulty recovering the types of both the key and
value in mapping variables, which are commonly used in real-world contracts.
Third, the authors used the highly duplicated dataset and its partial ground
truth information (recall from §2.3).

Although EVMpress achieves 88.8% accuracy in global variable type inference,
we further analyzed the causes of the remaining errors. We found that EVMpress
struggles to distinguish between bool and uint8 types, which have the same sizes
and are often used interchangeably in the bytecode. Interestingly, by ignoring
the distinction between these two types, we were able to achieve 95% accuracy
in global variable type inference.

4.4 RQ3: Impact of Path-based Function Identification

Recall from §3.2 that path-based function identification is a key component of
EVMpress that reduces the number of paths to be analyzed while precisely recov-
ering the CFG. Having established the high accuracy of EVMpress in the previ-
ous evaluations, we now assess how path-based function identification specifically
improves the runtime performance of EVMpress.

Table 4 shows the averaged time consumption of EVMpress and Gigahorse

on our dataset. We exclude VarLifter from this comparison since it does not
report CFG recovery time. The last column shows the runtime error rate of each
tool. When the tool reaches the timeout, we consider it as a runtime error, too.

Notably, the CFG recovery time of EVMpress is nearly 66% faster than it
of Gigahorse. The difference becomes even more significant on large bytecodes
(of top 10K bytecodes by size in our dataset), where EVMpress achieves nearly
4× faster code recovery than Gigahorse. This result confirms that path-based
function identification effectively reduces the number of paths to be analyzed by
EVMpress, leading to faster CFG recovery.

As the third column of Table 4 shows, the total time consumption of EVMpress
is slightly higher than that of Gigahorse. This slight increase is due to EVMpress
performing a more comprehensive analysis than Gigahorse. Specifically, EVMpress
recovers additional information such as the types of private function parameters,



private function return values, and public function return values, which Giga-

horse does not support. Nonetheless, EVMpress’s total time is comparable to
Gigahorse, which is a significant achievement, rendering EVMpress a practical
tool for EVM bytecode analysis.

5 Discussion

While EVMpress advances the current state of EVM type recovery, it still has
several limitations.

Transient Storage. Since Solidity 0.8.28, the language supports transient
storage, a temporary and cheaper storage area. EVMpress does not yet support
transient storage, but extending our approach to handle it is straightforward
since its mechanism is similar to storage area. However, transient storage is not
yet common in real-world contracts, and our dataset contains no such contracts.

Unused Variables. Our variable identification and type inference rely on
the behavioral hints of variables found in EVM bytecode. Therefore, our ap-
proach cannot recover the types of variables that are defined but not used in
the code. This limitation is common in type inference, and hence, is beyond the
scope of this paper.

6 Related Work

There are numerous studies on identifying functions in traditional binary code.
They often utilize pattern matching [4,17,23], compiler metadata [25], or prob-
abilistic models [18] to identify functions in binary code.

However, it is not feasible to apply these techniques to EVM bytecode as
it introduces additional challenges due to the lack of explicit call and return
instructions, especially for private functions. Gigahorse [13,14] leverage declar-
ative code patterns such as Continuation-Passing Style (CPS) calls to detect
private functions, while Neural-FEBI [15] employs a deep learning-based ap-
proach to identify private functions. On the other hand, EVMpress introduces a
procedural approach to identify private functions, which is more efficient than
declarative approaches and does not require a large training dataset like deep
learning-based approaches.

A common approach for inferring public function parameters is to use pre-
built databases of known function selectors [1, 2, 12, 13]. While effective, this
method cannot be applied to closed-source smart contracts. To address this,
SigRec [7] symbolically analyzes the prologue of public functions, extracting ar-
gument variables and their types by tracking how calldata is loaded into memory.
Other tools, such as VarLifter [22] and Crush [27], focus on recovering types of
variables in the EVM storage area, which holds contract assets. However, because
these tools are tailored to specific EVM data areas, they lack a unified analysis
framework for all variable types. Deep learning-based approaches [32] have also
been proposed to recover types of public function parameters and return values,
but their effectiveness depends heavily on the quality of training data and they



require substantial computational resources. In contrast, EVMpress is the first
tool to comprehensively recover all types of variables and their types in EVM
bytecode, without incurring heavy computational costs.

The rise of DeFi and NFTs highlights the need for scalable EVM bytecode
analysis to ensure smart contract security and reliability. Several tools [1, 2, 9,
10,13,14,24] decompile EVM bytecode into human-readable code to aid manual
and automated analysis. Although EVMpress is not a decompiler, it can serve as
a pre-processor for decompilers as it can recover precisely functions and variables
in EVM bytecode. Furthermore, our precise CFG recovery and type inference
techniques can benefit vulnerability detection tools that leverage EVM bytecode
analysis [8] by providing accurate information about functions and their types.

7 Conclusion

In this paper, we studied the current limitations of existing EVM bytecode anal-
ysis techniques and proposed a novel framework that addresses these limitations.
We also presented the largest dataset for EVM bytecode analysis to date, com-
prising over 370K unique contracts with precise ground truth. We evaluated our
framework on this dataset and demonstrated its effectiveness in recovering types
of global variables and functions.
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