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Abstract

Despite growing research interest, existing directed grey-
box fuzzers do not scale well with program complexity. In
this paper, we identify two major scalability challenges for
current directed grey-box fuzzing. Particularly, we find that
traditional coverage feedback does not always provide mean-
ingful guidance for reaching the target program point(s), and
the existing seed distance mechanism does not operate well
with programs with complex control structures. To address
these problems, we present a novel fuzzer, named DAFL.
DAFL selects code parts that are relevant to the target lo-
cation and obtains coverage feedback only from those parts.
Furthermore, it computes precise seed distances considering
the data-flow semantics of program executions. The results
are promising. Out of 41 real-world bugs, DAFL was able
to find 4, 6, 9, and 5 more bugs within the given time, com-
pared to AFL, AFLGo, WindRanger, and Beacon, respectively.
Furthermore, among the cases where all fuzzers produced a
median TTE, DAFL was at least 4.99 times faster on aver-
age compared to 3 state-of-the-art directed fuzzers including
AFLGo, WindRanger, and Beacon.

1 Introduction

Directed Grey-box Fuzzing (DGF) has been gaining momen-
tum in software security due to its ability to generate repro-
ducible test cases from bug reports. For instance, static analy-
sis tools often report buggy lines of code while not providing
concrete test cases for the bugs found [3-5,7,12,22,31,51].
Thus, DGF can help prove the validity of such reported bugs.
Current DGF is mainly based on two key mechanisms:
1) DGF evolves test cases by favoring ones that cover new ex-
ecution paths as in traditional (undirected) grey-box fuzzing;
2) DGF provides guidance to fuzzers in reaching the target
program point(s) by weighing the precedence of each test
case depending on the distance between the exercised nodes
and the target node(s) in the Control-Flow Graph (CFG).
Unfortunately, these mechanisms are subject to critical
challenges, which can make DGF no better or even worse than
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undirected fuzzing when handling programs with complex
control structures.

Challenge 1. Code coverage can give negative feedback
to DGF. As long as fuzzers can achieve more coverage, they
can be directed to paths that are irrelevant to the target execu-
tion. This problem becomes worse when the target program
is large as it can include more irrelevant code parts. To our
knowledge, Beacon [32] is the first in mitigating this problem
by essentially preventing irrelevant executions. Specifically,
it computes the weakest precondition for reaching the target
and modifies the program to early-terminate executions when
the precondition is not met. However, such a technique does
not scale with complex programs because precisely obtaining
weakest preconditions from a real-world program is infeasi-
ble. Indeed, our preliminary study shows that programs with
complicated loops will effectively disable Beacon’s weakest
precondition analysis (see §2.1).

Challenge 2. Current distance-based feedback mechanisms
do not operate well with programs with complex control
structures. Most existing directed grey-box fuzzers—such
as AFLGo [9], Hawkeye [15], and Beacon [32]—compute a
seed distance, i.e., a precedence score, of a test case, by con-
sidering all the executed nodes in the CFG. However, their
distance mechanisms can give wrong guidance toward irrel-
evant nodes, especially when the program is large because
long execution paths are likely to include many nodes that are
semantically irrelevant to the target. In such cases, existing
seed distance mechanisms can either prefer or penalize an
input based on the irrelevant part of the execution. To our
knowledge, WindRanger [23] is the first in tackling the bias
issue by selectively considering critical nodes named Devi-
ation Basic Blocks (DBBs). However, DBBs can be a bad
representative when they are within a loop as we will show in
§2.2.

Our Solution. In this paper, we present two novel tech-
niques for DGF to tackle the two aforementioned problems.
First, selective coverage instrumentation reduces negative
feedback by collecting code coverage information only from
those code parts relevant to the target execution. Ours is dif-



ferent from the path-pruning technique of Beacon in that we
do not modify the target program, nor remove any program
parts. Instead, selective coverage instrumentation simply skips
adding instrumentation to those irrelevant program parts so
as to not collect coverage information from them. This design
choice helps relax the soundness requirement of our analy-
sis, unlike Beacon, making ours applicable to more complex
programs with loops.

Second, semantic relevance scoring provides a precise way
to compute seed distance more intuitively compared to the
existing methods. The primary intuition here is that complex
control structures, such as loops, in a CFG can often be elimi-
nated when considering a Def-Use Graph (DUG). Therefore,
instead of computing seed distances from a CFG, we propose
to compute seed distances from a DUG. Our empirical study
shows that such design choice effectively guides fuzzing to-
ward target bugs while reducing analysis time.

We present DAFL, a new directed grey-box fuzzer that
implements our techniques to tackle both of the challenges.
Our experimental results show substantial improvements over
existing fuzzers. Particularly, we evaluated DAFL on 41 real-
world bugs used in previous literature, and showed that DAFL
was able to reproduce the bugs significantly faster than exist-
ing directed fuzzers.

Finally, it is important to note that not many DGF tools are
readily available. Even if a tool itself is available, the associ-
ated utility, such as a triage script, is not. Hence, reproducing
previous results is extremely difficult if not impossible. We
have communicated with the authors of the existing papers
and put significant effort to make fair comparisons. Thus, we
truly believe one of our contributions is to fully publicize our
toolchain as well as our dataset.

In summary, our contributions are:

* We present selective coverage instrumentation, a novel
way to measure code coverage for DGF.

* We devise semantic relevance scoring, a novel technique
to effectively schedule seeds for DGF.

* We design and implement DAFL incorporating both
techniques.

* We publicize DAFL to support open science via Zenodo
and GitHub:

https://doi.org/10.5281/zenodo.8031029 and
https://github.com/prosyslab/DAFL-artifact

2 Motivation

We motivate our approach by considering a buffer overflow
bug found in swftophp of the libming project [1], which is
assigned CVE-2017-7578 [59]. Figure | shows a simplified
code snippet. The program first opens a file (Line 9) and reads
a stream of input data from the file by iterating the for-loop.

1 struct SWFblock {

2 int type;

3 SWFParseFunc parser;

4}

5

6 struct SWFblock blks[80] ={ { , parseSWF_DEFINEMORPHSHAPE }, ...
7

8 int main(int argc, char *argv[]) {

9 FILE *f = fopen (argv[l], "r");

10 SWF_Parserstruct *block;

11 for (;;) |

12 if (/* not enough data in the file */)

13 break;

14 int type = fgetc(f);

15 int length = fgetc(f);

16 if (length == )

17 if (/* not enough data in the file */
18 break;

19 e
20 } else {
21 block = blockParse(f, type);
22 }
23 .
24 }
25}
26
27 SWF_Parserstruct *blockParse(FILE *f, int type) {
28 for (int i = 0; 1 < ;i) |
29 if (blks[i].type == type)
30 return blks[i].parser(f);
31 }
32 )
33
34 SWF_Parserstruct *parseSWF_DEFINEMORPHSHAPE (FILE *f) {

35 S ORPHGRADREC GradientRecords([8];

36 int 1 = fgetc(f);

37 parseSWF_RGBA (f, &GradientRecords[i]);

38 e

39 }

40

41 void parseSWF_RGBA(FILE *f, struct SWF_MORPHGRADREC *gradient) {
42 gradient->StartColor = ...; // crash location

43

44}

Figure 1: Motivating example.

When the published Proof-Of-Concept (PoC) [59] is given
as input, the program assigns integer 46 to variable type
(Line 14), which is used to indirectly call the parser function
parseSWF_DEFINEMORPHSHAPE (Line 30). The parser func-
tion then calls the vulnerable function parseSWF_RGBA to
save the color information in the GradientRecords array
(Line 37). Note that the size of the array is 8 (Line 35), while
the index variable i can have an arbitrarily large number de-
pending on the user input (Line 36). Thus, this program may
crash at Line 42 due to invalid memory access. The goal of
this paper is to guide a fuzzer to automatically generate such
inputs (e.g., type and 1) for discovering the target bug (e.g.,
Line 42).

2.1 Challenge 1: Negative Feedback

DGEF selects test cases that can achieve new code coverage,
but this strategy can provide negative feedback in reaching
the target location. In this example, there are 389 functions
reachable from the main function. However, only 31 of them


https://doi.org/10.5281/zenodo.8031029
https://github.com/prosyslab/DAFL-artifact

main

[filelen_check] [blockParseJ [outputBlock] [ SWF_warn J
80

N

[parseSWF_DEFINEMORPHSHAPE] e

parseSWF_RGBA

Figure 2: Call graph of the program in Figure |. Shaded
nodes represent functions executed with the PoC [59]. The
double-edged node is the crashing function.

other functions

are exercised with the PoC. Figure 2 shows a simplified call
graph where the shaded nodes represent functions executed
when the PoC is used as input. While blockParse can call
more than 80 different functions depending on the user in-
put, only one function, i.e., parseSWF_DEFINEMORPHSHAPE,
is relevant to the target bug. Nevertheless, existing directed
fuzzers assign a good amount of energy to the test cases that
explore such new (but irrelevant) functions, thereby signifi-
cantly misguiding them.

Beacon [32] mitigates this problem by pruning infeasible
paths that cannot reach the target, but it is insufficient to han-
dle complex programs such as this example. Ideally, Beacon
should have generated the weakest precondition for reaching
the target bug. For example, it could have found that the value
of type (in Line 14 and 29) should be 46, and could have
created a statement asserting the precondition (i.e., type ==
46). By putting the assert statement right after Line 14, Bea-
con could have prevented irrelevant executions in an ideal
scenario. In practice, however, Beacon fails to infer any pre-
conditions from the functions main and blockParse due to
their complex control structures. Note that inferring weakest
preconditions is challenging in the presence of complicated
loops. Consequently, Beacon cannot provide any guidance to
the target point in this example. This suggests the need for a
scalable way to eliminate negative feedback (§3.1).

2.2 Challenge 2: Misleading Distance Metrics

Current DGF guides the search by prioritizing test cases based
on their syntactic distances to the target on the control-flow
graphs, but such a syntactic metric often fails to reflect the
semantic aspects of the target bug.

Suppose there are two seed inputs s4 and sp that explore
different paths in the example program. Figure 3a depicts the
executions where each node corresponds to a line number in
Figure 1. s4 is a malformed file, and the execution with s4
takes the true branch of the first conditional (Line 12) and
quickly terminates the program. AFLGo computes the seed
distance of s4 by taking the average of the distances between

the executed nodes and the target node, which results in 34.5
in our example. On the other hand, seed sp is a well-formed
file, and thus, is more relevant to the target bug. The execution
with sp passes the first sanity check in Line 12, although it
does not pass the second sanity check in Line 17. While sp
is semantically more relevant to the bug, AFLGo assigns a
higher seed distance 36.75 to seed sp than s4, meaning that
AFLGo will prefer s4 over sp.

Other state-of-the-art approaches fundamentally have the
same limitation. Notably, WindRanger [23] computes the av-
erage of the distances between a subset of executed nodes and
the target node. It selects the subset, named deviation basic
blocks (DBB), by considering nodes in the CFGs that deviate
the execution from the target location. In our example, the
deviation basic block of sy4 is block 12 in Figure 3b, because
the block deviates the execution from the loop. Thus, Win-
dRanger gets 34 as its seed distance. Similarly, WindRanger
computes the seed distance of sp as 45 (considering its de-
viation basic block as block 17) which is higher than that of
sa." Notice that WindRanger still has the same problem as
AFLGo; the DBB-based distance metric can also mislead the
guidance when complicated control structures are involved
such as loops. This motivates our semantic relevance scor-
ing, a semantically intuitive and precise distance feedback
mechanism (§3.2).

3 Overview

This section gives a high-level overview of DAFL, which tack-
les the two challenges. DAFL employs two major techniques
to handle each challenge: 1) selective coverage instrumenta-
tion, and 2) semantic relevance scoring.

Figure 4 illustrates the overall architecture of DAFL, which
consists of two major phases: static analysis and fuzzing
phase. During the static analysis phase, DAFL takes in as
input a program with an annotated target location and runs an
inter-procedural static analysis to identify all the statements
that the target location is data-dependent on. Our analysis
returns a Def-Use Graph (DUG) and a set of relevant func-
tions with respect to the target point. DAFL then performs
selective coverage instrumentation (§3.1), which instruments
only the relevant functions in the target program. This enables
DAFL to selectively receive coverage feedback only from
the dependent parts of the program during the next fuzzing
phase.

In the fuzzing phase, DAFL iteratively runs the instru-
mented program as in traditional grey-box fuzzing, but it gets
code coverage only from the relevant functions due to selec-
tive coverage instrumentation. Furthermore, DAFL employs
a novel scheduling algorithm that we call semantic relevance
scoring (§3.2), which prioritizes seeds with respect to their

1For brevity, we assume that the degrees of penetrating difficulty [23] of
the two deviation basic blocks are equal.
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(a) CFG-based distances of AFLGo [9]. Smaller
distances get a higher priority.
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(b) DBB-based distances of WindRanger [23].(c) Semantic relevance scores of DAFL.
Smaller distances get a higher priority.
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Figure 3: Scores of seeds based on different evaluation criteria. Each node represents a basic block and the number indicates the
line number of its first instruction. Shaded nodes represent statements executed by each seed. Double-edged nodes are the target
point. Solid and dotted edges in a and b represent intra- and inter-procedural control-flow edges, respectively.
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Figure 4: DAFL architecture.

relevance scores, which are derived from the DUG, rather
than syntactic distances.

Under the guidance of the two techniques, DAFL signif-
icantly outperforms existing fuzzers. Specifically, we ran
DAFL, AFL, AFLGo, Beacon, and WindRanger, and mea-
sured time to generate a test case that triggers CVE-2017-7578
shown in the example. As a result, DAFL, AFL, AFLGo, and
Beacon were able to discover a buggy test case in 139s, 283s,
636s, and 1,058s, respectively (WindRanger is ignored be-
cause it resulted in a timeout after 24 hours). That is, DAFL
was at least 2 times and at most 7.6 times faster than the
state-of-the-art tools in exposing this bug.

3.1 Selective Coverage Instrumentation

Unlike existing directed fuzzers, DAFL selectively receives
coverage feedback only from a portion of the target program
that is relevant to the target location. To identify such relevant
parts, we traverse the program backward starting from the tar-

get location on the DUG, and collect all dependent statements.
In the example, we collect the nodes shown in Figure 3c.

While this set of nodes contains semantically relevant parts
to the target location, data dependencies may miss critical
conditional statements that determine the reachability to the
target location (i.e., control dependency). For example, the
conditional statement in Line 29 is crucial to reaching the
target point but is not a part of data dependency. However, col-
lecting all the data- and control-dependent nodes transitively
can result in a significant precision loss.

To address this issue, we collect all functions in the sliced
DUG and instrument all the nodes in the functions to receive
coverage feedback. This in turn includes control-dependent
nodes that are closely related to the data dependencies, while
preventing excessive overapproximation. In Figure 1, our ap-
proach selects only 4 functions out of 389. The identified
functions are shown as shaded nodes in Figure 2. This selec-
tive instrumentation can guide the fuzzer toward the relevant
functions (e.g., parseSWF_DEFINEMORPHSHAPE) without be-



Algorithm 1: DAFL (P,1)

1 G,F « Slice(P,t) /] §4.1
2 P’ + SelectiveCovlnstr(P, F) 11§31
3 Pool + InitializeSeedPool()

4 Crashes < @

5 while not timeout do

6 s,scr < Choose(Pool) 1§42
7 e < AssignEnergy(scr) /1 §4.2
8 for e times do

9 s' < Mutate(s)

10 cov < MeasureCov(P',s',F)

11 scr < ComputeScore(P',s', G) 1§4.2
12 if cov has any gain then

13 L Pool < Add(Pool, s’ ,scr)

14 if s’ crashes P' then

15 L Crashes < Crashes\U {s'}

16 return Crashes

ing distracted by other functions called from blockParse,
thereby tackling Challenge 1.

3.2 Semantic Relevance Scoring

We evaluate seed inputs by their semantic relevance rather
than the syntactic distances. We define a score of a seed input
as the sum of semantic relevance scores of executed nodes
in the DUG, where the score of each node is defined based
on the proximity to the target point. Specifically, we assign
score 1 to the farthest nodes and the maximum score, i.e., the
distance from the farthest node to the target, to the closest
nodes from the target. For example, nodes 9 and 14 have
score 1 in Figure 3c as they are the farthest nodes. On the
other hand, node 37 is assigned 4 which is the distance of
the farthest nodes 9 and 14. The score of the target node is
simply assigned 5. Then, the semantic relevance score of seed
s4 in Figure 3c which executes only Line 9 is 1. On the other
hand, the score of seed sp is assigned 2 as it executes two
nodes 9 and 14 appear in the DUG. This in turn leads DAFL
to prioritize sp over s4 during a fuzzing campaign, thereby
addressing Challenge 2.

4 Design

In this section, we detail the design of DAFL, which is out-
lined in Algorithm 1. At a high level, DAFL is a function that
takes in as input a program P and a target program point 7,
and returns a set of crashing test cases found.

DAFL first statically analyzes the data dependency of
P and slices P with regard to ¢ using the data dependency
(Line 1). The function Slice returns a tuple (G,F): 1) Gis a
DUG obtained by following the data definitions from ¢, and
2) F is a set of functions that are covered by G. We use the

thin slicing technique [57] to focus on value transfers, as we
will further detail in §4.1. The set of sliced functions F serves
as a basis for selective coverage instrumentation, which es-
sentially instruments only those functions in F* and returns an
instrumented program P’.

DAFL then enters the fuzzing phase, where it first ini-
tializes both the seed pool and the set of crashing test cases
(Line 3—4). Next, DAFL iterates the while loop to generate
test case(s) that can reach ¢. For each iteration, DAFL chooses
a seed s from the seed pool (Line 6) and assigns energy to
s based on the semantic relevance score, which essentially
decides how many mutants to make from the seed (Line 7).
For each mutant test case s’ generated from s, DAFL then
runs P with s’ while selectively measuring coverage only from
the sliced functions F. For every mutant execution, DAFL
computes the semantic relevance score for each mutant using
G (Line 11). We further detail our seed scheduling strategy in
§4.2.

4.1 Program Slicing

Traditional program slicing computes a set of all possible
source lines that may affect a given program point. However,
we note that it can produce an unnecessarily large slice as
output. Consider the following example:

1ox = £();
2y =90;
3. p = &yi
4 z = x t+ *p;

Let us assume that our goal here is to compute a static
program slice for z in Line 4. In our setup, this means Line 4
is our target line to reach. Since the variable z in Line 4 is
affected by the variables x, y, and p, a naive slicing algorithm
will return Line 1-3 as a result. However, we note that Line 3
merely gets an address of the variable y, and the actual value
copies are performed through Line 1 and 2. That is, we can
potentially obtain a compact slice from the example program,
which contains only Line 1 and 2.

Thin slicing [57] addresses this challenge by ignoring data
dependencies through pointer dereferences. In this example,
the result of thin slicing concisely includes the definition of
two variables that were directly used as the addition operands
in Line 4. Consequently, thin slicing returns Line 1-2 as a
result in the above example. As we will empirically show
in §5.3, thin slicing provides more effective guidance for
directed fuzzing.

Unlike typical applications of slicing (e.g., debugging or
program understanding), fuzzing has to actually execute
control-dependent nodes of the target location even though
they are not in the thin slice. However, as briefly discussed in
§3.1, it is impractical to collect all data- and control-dependent
nodes because of the over-approximation.



Instead, we observed that most of the important control-
dependencies appear lexically near the thin slice nodes as
also discussed in the original paper [57]. Thus, we instru-
ment functions that include sliced nodes, while computing
relevance scores using the sliced nodes, as will be discussed
in section 4.2. In our experience, this two-level scheme en-
ables DAFL to effectively explore code blocks near the target
location while prioritizing semantically relevant seeds.

We now formally describe our slicing module. Given a
program P and a target point, our slicing algorithm computes
a DUG that contains data-flows related to the provided target
point. We assume that the program is represented as a CFG
(C,—) where C is the set of program points and (—) CCx C
is the set of (inter-procedural) control flow edges. A target
location ¢ € C is a node in the control flow graph, and our
goal is to generate a test case that reaches ¢. The DUG (C, —)
of P has the same set of nodes as the CFG, but it comprises
data dependency edges (—) rather than control flow edges
(—). We define the data dependency edges based on the thin
slicing strategy [57]:

1 = ¢y <= c1 =1y A xisdefined at c; A
x is used at c¢;, but not for pointer dereference A

x is not defined at any node between ¢ and ¢,

where x is a variable in P.

Note that even with thin slicing, it is still necessary to
know which variables are pointed to by each pointer variable.
Without this information, we cannot figure out which variables
are defined and used in each program point. Therefore, we
perform a flow-insensitive and context-insensitive pointer
analysis to derive the data dependencies.

Once the whole DUG is obtained, we prune away the DUG
to obtain G whose nodes are relevant to the target location 7.
Particularly, we traverse the whole graph backward starting
from the target node and construct the sliced one. Formally,
given the whole graph (C, <) and the target node 7, we con-
struct the sliced graph G = (C;, ;) with respect to ¢ where

C,={ceClc="t}
(‘—>,) = {(C],Cz) | 1 €C N eC A ‘—)CQ}.

Finally, we compute the set of relevant functions by collecting
all the functions involved in the sliced graph:

F ={f | f is the function that contains ¢ A ¢ € C,}.

4.2 Seed Scheduling

Recall from §2.2 that the current DGF relies on a seed distance
mechanism, which does not reliably represent the semantic
distances between two executions. Our seed scheduling in-
stead leverages a novel feedback mechanism that we call
semantic relevance score, which measures the proximity be-
tween exercised nodes and a target node in the sliced DUG.

By using a sliced DUG over a CFG for calculating the
feedback, we gain two major advantages. First, we can nat-
urally disregard irrelevant nodes as the sliced DUG simply
does not include them. Second, even if a CFG has loop(s), the
corresponding DUG will not have a loop as long as there is no
cyclic data dependency as we showed in Figure 3. Therefore,
it is unlikely to make a miscalculation as in the cases shown
in §2.2, where a semantically closer execution has a longer
seed distance.

4.2.1 Semantic Relevance Score

DAFL computes the semantic relevance score for each seed
input defined with the sliced DUG G obtained from the static
analysis phase. We give a higher score to a seed if 1) the
program execution with the seed exercises more nodes in G,
or 2) the program execution with the seed exercises nodes
that are closer to the target point. Intuitively, the semantic
relevance score reflects how relevant the seed is to the target
point in terms of data dependency.

More formally, we define the relevance score of each node
based on the distance to the target node in the sliced DUG.
Let |c; — c2| denote the shortest distance between two nodes
c1 and ¢ in a DUG. Given a DUG G and the target node ¢,
the semantic relevance score of a node c is:

Scoreg(c) =L—(|c—1])+1

where L = max.cc, |c —¢] is the distance between ¢ and its
farthest node on G. In other words, the farthest node from the
target point is assigned the lowest weight, which is one, and
the closest node is assigned the highest weight.

We now define the semantic relevance score of a seed input,
which is obtained by accumulating the relevance scores of the
nodes in the DUG. Particularly, we observe which nodes in
the DUG is exercised during the course of execution of the
program with the given seed input, and sum all the relevance
scores of exercised nodes. Let C; be the set of nodes in G
executed with seed s. By abuse of notation, the score of seed
s is defined as the sum of the scores of the covered nodes:

Scoreg,(s) = Y Scoreg,(c).

ceCy

4.2.2 Seed Pool Management

The first use of our semantic relevance score is to prioritize
the seeds for fuzzing. Following the design of AFL [63],
we basically maintain the seed pool as a circular queue and
choose seeds in sequence. However, we prioritize the seeds
based on the relevance score rather than the distance over
control-flow graphs. Whenever a new seed is added (Line 13
of Algorithm 1), all the elements in the pool are sorted by the
relevance score. This enables DAFL to select more promising
seeds earlier during the fuzzing campaign. Notice that the



sorting does not rewind the pointer to the next seed to be
selected. Thus this algorithm is free from starvation.

4.2.3 Energy Assignment

The semantic relevance score also determines how much time
to spend fuzzing each seed. In line 7 of Algorithm I, we
decide the number of mutants to derive from the chosen seed.
This is often referred to as energy in the literature [9, 10, 63].

To derive more mutants from promising seeds, we as-
sign more energy to a seed input with a higher relevance
score. While basically following the same energy assignment
scheme as the existing work [9, 10, 63], we further adjust the
scheme by using the relevance score of each seed. The con-
ventional energy assignment scheme Eapy (s) is defined by
various factors of the seed s, such as the length of the exe-
cution trace and its execution speed. In addition to that, we
multiply the following factor by Eapr(s):

SCrg

EparL(s) = * EAFL(S)

Tavg
where scry is the semantic relevance score of the seed s and
SCrayg is the average score of all the seeds in the seed pool.

4.3 Implementation

We implemented DAFL on top of AFL [63] v2.57b. Specif-
ically, we added 36 lines of C++ code in the AFL’s LLVM
pass for selective coverage instrumentation in order to skip
instrumenting program locations filtered out from the slic-
ing step. We also added 489 lines and deleted 195 lines of
C and C++ code in the AFL’s LLVM pass and the schedul-
ing algorithm. In total, DAFL consists of 8,902 SLoC of C
and C++ code. The program slicing module is implemented
on top of SPARROW [46], a static analysis framework for C
programs. We added 2,150 SLoc and deleted 415 SLoC of
OCaml code for implementing the slicing module. We make
our source code publicly available at Zenodo And GitHub:
https://doi.org/10.5281/zenodo.8031029 and https:
//github.com/prosyslab/DAFL-artifact

5 Evaluation

This section answers the following research questions:

RQ1. How fast is DAFL in terms of reproducing target
bugs?

RQ2. How does the choice of slicing strategies affect the
performance of DAFL?

RQ3. How do our techniques (selective coverage instrumen-
tation and semantic relevance scoring) affect the per-
formance of the fuzzing results?

5.1 Evaluation Setup

Baselines. We compare DAFL with the following four state-
of-the-art fuzzers that are publicly available:

e AFL [63]: v2.57b.

* AFLGo [9]: commit b170fad.

e Beacon [32]: Docker SHA256 hash a09c8cb.

* WindRanger [23]: Docker SHA256 hash 8614ceb.

We excluded Hawkeye [15] and ParmeSan [47] from our
comparison for the following reasons. Hawkeye is not pub-
licly available. ParmeSan is public, but we had trouble repro-
ducing the results reported in the original paper. We note that
Herrera et al. [29] also reported the same problem.

Benchmark. We evaluated the performance of the fuzzers
using various types of security vulnerabilities in C programs.
Specifically, we used 41 vulnerabilities from the Beacon [32]
paper. Among all the vulnerabilities in Beacon’s benchmark,
we excluded 14 vulnerabilities because 1) 7 of them were
from C++ programs while our static analyzer only supports
C, 2) bug reports for 5 of the vulnerabilities were not accessi-
ble, as the database is not maintained anymore, and 3) none
of the fuzzers were able to reproduce 2 of the vulnerabili-
ties within 24 hours. These two vulnerabilities require very
specific inputs to trigger the bugs. For example, CVE-2018-
13785 is caused by a division-by-zero that is triggered only
when the width and channel of the input PNG file are set to
0x55555555 and 0x3, respectively. Therefore, fuzzers have
extremely low chances to reproduce these vulnerabilities. The
chosen vulnerabilities are shown in Table 1. We highlight
that this benchmark includes 6 CVEs from Binutils which are
commonly used in other directed fuzzing papers [9,15,23,47]
as well.

Note that we built all the target binaries using ASAN [54]
in the main experiment, since it is a common practice in
most fuzzing campaigns that aim to expose vulnerabilities.
However, Beacon does not support fuzzing a target binary
compiled with ASAN. Therefore, we ran a supplementary
experiment without ASAN to compare DAFL with Beacon.

Evaluation Criteria. To evaluate the performance of di-
rected fuzzers in a crash reproducing test, we first have to
set precise criteria to specify a target bug, i.e., target program
location(s), and to decide whether the bug is found or not. Un-
fortunately, none of our baseline fuzzers provides their criteria,
which makes it extremely difficult to have the same setting
as the ones used in their original experiments. We, hence,
carefully set our criteria after multiple communications with
the authors of the previous work, and we will publicize our
evaluation criteria for follow-up research.

Specifically, we obtained the target location of each bug
by running the ASAN-enabled program with the PoC input
stored in the MITRE CVE database [45]. We then chose our


https://doi.org/10.5281/zenodo.8031029
https://github.com/prosyslab/DAFL-artifact
https://github.com/prosyslab/DAFL-artifact

AFL AFLGo

T.0. TO. ToO. TO0. TO. TO.

‘WINDRANGER BN DAFL

T0. TO T.O. TO0. TO. TO

10°
10!

S Y - TN IO P

o 9> 4 8 SN
AN AN @0,& o

o » 0
g o N \’9’ ’&\ﬁ N
v

AW oA o e
AN AN S i

B BN

RN S Y LRIV ML L S
07 B BT T T T g e S e Y

o0 &) N 2D o (4 o od

SN SN GRS L S St SN

A0 A A AN AT WA a1 oY
> 'LQ{\ 'LQ\’\ AT T g o

Figure 5: Performance comparison between DAFL and the baseline tools. Each bar represents the sum of the total time spent
(both static analysis and fuzzing) with each tool for each subject. Note that the Y axis, which denotes TTE:s, is in log scale. This
chart excludes those subjects where all the tools failed to produce a median TTE.

target location from the stack trace obtained from an ASAN
report.

To determine whether the targeted bug is found by a crash-
ing input, we first replayed the input with the ASAN-enabled
program. We then examined the generated ASAN report to
triage the crash with the following three criteria. First, we
regard a crash as the targeted one if the crash type and the
crash line are identical to those of the PoC. Second, for the
cases where different bugs of a program can have the same
crash location (e.g., CVE-2017-11728 & CVE-2017-11729),
we additionally checked if the immediate caller of the crash
line matches. Finally, for the stack overflow cases (i.e., infinite
recursion), we checked whether all the functions that appear
on the stack trace of the PoC are included in the stack trace
of our crashing input.

Recall that ASAN is not used in the fuzzing stage of the sup-
plementary experiment against Beacon. While ASAN was not
used during the fuzzing, we replayed the found crashes with
the ASAN-enabled program afterwards to obtain the ASAN
report. Based on this report, we could use the same triaging
criteria in both the main experiment and the supplementary
experiment against Beacon.

To evaluate the fuzzers, we measured the Time To Expo-
sure (TTE) for each bug. For TTE, we consider not only the
running time of fuzzing, but also that of static analysis if the
fuzzer uses static analysis to obtain information from the pro-
gram to guide the fuzzing (i.e., DAFL, AFLGo, and Beacon).
This is because static analysis time is often not a one-time
cost in practice. For example, in the setting of continuous
fuzzing (i.e., targeting changed code) the analysis must be

performed every time the code changes. Unless otherwise
noted, we used the same metric for all experiments.

All tools were given 24 hours of time budget for the fuzzing
step. We repeated the experiments 40 times and took the
median value to minimize the impact of the fluctuation due to
the innate randomness in fuzzing.

Environment. We ran the experiment on the machines
equipped with Intel(R) Xeon(R) Gold 6226R CPU @
2.90GHz with 64 cores using Ubuntu 20.04 LTS. Each fuzzing
session was run on a Docker container assigned with a single
CPU core and 4GB of memory. We utilized only 40 out of 64
CPU cores, all running the same fuzzing session.

5.2 Time-to-Exposure

We first evaluate the effectiveness of DAFL in terms of TTE
in the crash reproduction experiment. Table 2 shows the re-
sults. We mark the result as N.A. if the fuzzer was not able
to reproduce the target crash within 24 hours for more than
half of the trials (out of 40 iterations) as the median is not
available.

Overall, DAFL shows the best performance in 27 cases,
while AFL, AFLGo, and WindRanger do so for 6, 0, and 4
cases, respectively. Also, DAFL was able to report a me-
dian TTE (i.e., did not result in N.A.) on 31 benchmarks,
whereas AFL, AFLGo, and WindRanger reported a median
TTE on 28, 25, and 21 benchmarks respectively. For 20 bench-
marks where all the tools successfully reported a median TTE,
DAFL outperformed each baseline by 1.93, 4.99, and 20.08
times, on average, respectively. Furthermore, DAFL signifi-



Table 1: Benchmark composition. The Type column indicates
the type of vulnerability of each CVE with the following
abbreviations: BOF (Buffer Overflow), ND (Null Derefer-
ence), SO (Stack Overflow), UAF (Use-After-Free), 10 (In-
teger Overflow). The Total # row denotes the total number
of programs for the Program column, the total number of
CVEs for the CVE column, and the total number of the types
of vulnerabilities for the Type column.

Project Program Version CVE Type
2016-9827 BOF
2016-9829 ND
2016-9831 BOF
04.7 2017-9988 ND
2017-11728 ND
2017-11729  ND
2017-7578 BOF
Mi ftooh 2018-7868 UAF
ne switophp 2018-8807  UAF
2018-8962 UAF
2018-11095 UAF
04.8 2018-11225 BOF
o 2018-11226  BOF
2018-20427 ND
2019-9114 BOF
2019-12982  BOF
2020-6628 BOF
. . 2017-8846 UAF
Lrzip Irzip 0.631 2018-11496  UAF
2016-4487 ND
2016-4489 UAF
' 2016-4490 10
cxxfilt 2.6 20164491 SO
2016-4492 10
2016-6131 SO
Bintuils 2017-8393 BOF
objcopy 2.8 2017-8394 ND
2017-8395 ND
2017-8392 ND
)3 2017-8396 BOF
objdump ’ 2017-8397 BOF
2017-8398 BOF
2.31.1 2018-17360  BOF
strip 2.7 2017-7303 ND
nm 2.9 2017-14940 OOM
readelf 2.9 2017-16828 IO
2017-5969 ND
Libxml2 xmllint 294 2017-9047 BOF
2017-9048 BOF
o . 1.5.90 2018-14498 BOF
Libjpeg cjpeg
2.04 2020-13790 BOF

Total # 10 41 6

cantly outperformed the others in the subjects where all the
other tools struggled to reproduce the target crash (CVE-2018-
7868, CVE-2018-8962, CVE-2017-9047, CVE-2017-9048,
and CVE-2018-14498).

In the supplementary experiment without ASAN, DAFL
outperformed Beacon in 32 cases. In terms of median TTEs,
DAFL was able to report a median TTE for 23 benchmarks,
whereas Beacon was able to do so in 18 benchmarks. For the
cases where DAFL and Beacon could both report median
TTEs, DAFL was 20.34 times faster than Beacon on average.

DAFL consistently outperforms the other tools even when
comparing only the fuzzing time, without considering the
static analysis overhead. In terms of fuzzing time alone,
DAFL showed the best performance for 30 cases in the main
experiment and 32 cases in the supplementary experiment.
For 20 benchmarks where all the tools successfully reported
a median TTE, DAFL was 2.80, 2.69, and 22.01 times faster
than AFL, AFLGo, and WindRanger, respectively, on average.
Compared to Beacon, DAFL was 4.31 times faster on average
for the benchmarks where they both successfully reported a
median TTE.

The results also show that our static analysis is more cost-
effective than the other approaches. Especially, Beacon spent
a huge amount of time running the static analysis on cxxfilt.
We conjecture that this is mainly due to the difficulty of the
weakest precondition analysis. On the other hand, DAFL
relies on a DUG which is easier to obtain. As a result, our
analysis is 32.28 times faster than AFLGo, and 44.05 times
faster than Beacon, on average.

Although DAFL is effective in most cases, there are 4
non-negligible cases where we underperformed: CVE-2018-
20427, CVE-2019-9114, CVE-2017-8396, and CVE-2017-
14940. This result is mainly due to the fact that our slicing
does not soundly compute the control dependencies, as we dis-
cussed in §4.1. While our design of selective instrumentation
successfully identified intra-procedural control dependencies
in most cases, it did not fully capture inter-procedural control
dependencies.

The case study of CVE-2018-20427 explains our limitation
in detail. Our slicing result did not include decompileAction
function, which handles various switch cases as shown in Fig-
ure 6 in the appendix. To trigger the target bug in Line 29,
push and decompileGETPROPERTY functions have to be se-
quentially called from decompileAction. Thus, including
decompileAction in the instrumentation target is important
for discovering an input that explores these functions. How-
ever, decompileAction is related to the target location via
inter-procedural control dependencies, not data dependencies.
While decompileAction calls decompileGETPROPERTY
with two arguments, decompileGETPROPERTY uses neither
of these arguments when calling getInt. Instead, it pops
idx from a global array and uses it as the argument
of getInt. Thus, there is no data dependency between
decompileAction and decompileGETPROPERTY. Other



Table 2: Crash reproduction results of DAFL and the baseline tools. 7 denotes the time purely spent in the fuzzing process.
Tf14q is the total time spent, considering both static analysis and fuzzing. Note that we only report 7 for WindRanger as its
static analysis time is negligible. Each reported number is a median over 40 repeated experiments. N.A. indicates that the tool
could not produce a median TTE, which means that it was not able to reproduce the bug for more than half of the repeated
experiments. The parentheses denote how many times the fuzzer was able to reproduce the bug. Unlike TTE, this number is
better when bigger. For each target (i.e., each row), the best result is marked with bold font and an asterisk. # Best perf. denotes
the number of targets for which the tool has the best performance among all the other tools.

With ASAN \ Without ASAN

AFL AFLGo WindRanger DAFL ‘ Beacon DAFL

Program  CVE Ty Ty Tfisa Ty Ty Trisa | Tftsa Tfisa
2016-9827 71 67 409 66 54 * 61 1,925 * 308
2016-9829 272 188 519 5,304 144 * 151 N.A.(16) * 485
2016-9831 361 326 663 46,920 136 * 143 208 *117
2017-9988 1,920 1,834 2,168 1,828 1,741 * 1,748 1,371 * 768
2017-11728 1,536 1,304 1,649 1,758 267 * 274 * 32,402 N.A.(13)
2017-11729 507 333 678 661 126 *133 3,396 * 370
2017-7578 283 298 636 N.A.(17) 132 *139 1,058 * 118
2018-7868 N.A. (0) - N.A. (0) N.A. (1) - *N.A.(13) NA. 3)  *N.A.(20)
switophp 2018-8807 N.A. (0) - NA. (0) N.A. (0) - *=N.A. (1 N.A. (0) *N.A. (1)
2018-8962 N.A. (0) - NA. (0) N.A. (0) - *N.A. @ N.A. (00 *NA. (3)
2018-11095 3,362 2,662 3,009 776 598 * 606 10,977 * 565
2018-11225 40,725 - N.AJ(3) N.A.(16) 17,772 * 17,780 N.A.(16) * 38,277
2018-11226 65,439 - N.A(3) N.A.(18) 16,445 * 16,453 N.A.(149) *N.A.(19)
2018-20427 * 4,918 4,853 5,202 8,070 12,893 12,901 * 3,505 7,109
2019-9114 33,240 - N.AJ(19) * 17,696 37,135 37,142 34,817 * 31,576
2019-12982  N.A.(20) 46,907 47,256 N.A. (5) 5427 * 5,435 N.A. (1) *NA. (8)
2020-6628 62,171 - NA(D N.A.(12) 14,646 * 14,654 N.A.(15) * 46,601
i 2017-8846 N.A. (0) - NA. (0) N.A. (0) - NA. (0 N.A. (00 *NA. (8)
P 2018-11496 11 12 185 11 13 17 N.A. (0) *77
2016-4487 560 571 776 461 257 *273 2,771 71
2016-4489 1,105 1,181 1,384 * 310 868 885 4,902 * 207
i 20164490 269 255 460 148 56 72 3,977 * 3()
2016-4491 N.A. (2) - NA. () N.A. (1) - *N.A. (6) N.A. (00  *N.A.(15)
2016-4492 1,463 3,118 3,326 3,265 735 * 752 4,807 * 181
2016-6131 N.A. (0) - NA. (0) N.A. (0) - NA. (0 N.A. (0) *N.A. (1)
2017-8393 1,425 1,399 3,054 1,311 458 * 630 NA. 3 *N.A. (6)
objcopy  2017-8394 826 878 2,525 916 292 * 484 4,789 * 240
2017-8395 * 115 105 1,770 108 10 262 4,607 * 254
2017-8392 * 277 325 2,141 N.A. (4) 39 294 N.A. (6) * 41,806
2017-8396 N.A. (4) - NA. () N.A. (0) - NA. (0 N.A.(13) N.A. (7)
objdump 2017-8397 24,835 28,607 30,403 NA. 2) 18,699 * 18,960 NA. 3 *N.A.(13)
2017-8398 1,857 2,620 4,426 * 1,006 1,640 2,068 N.A. (0) N.A. (0)
2018-17360  N.A. (2) - NA. (0) N.A. (3) - *N.A. (6) N.A. (6) N.A. (6)
strip 2017-7303 * 122 125 3,691 1,758 156 214 | 3,913 * 112
nm 2017-14940 * 19,582 30,009 33,443 N.A.(16) - NA (6 | NA (00 *NA. (G5
readelf  2017-16828 221 192 729 * 44 239 254 | N.A(S) * 64,516
2017-5969 * 320 395 2,558 587 172 1,159 1,099 * 1,015
xmllint ~ 2017-9047 N.A.(19) - NA(14) N.A. (8) 26,558 * 33,607 * 25,388 27,977
2017-9048 NA. (2 - NA. (0 NA. 0 6,739 #7722 N.A. @) N.A. (0)
cie 2018-14498  N.A.(16) - NAJ(12) N.A. (0) 16,940 * 16,943 N.A. (0) N.A. (0)
PeY H20-13790 N.A. (6) - NA (3 N.A. (0) - #*N.A.(10) NA. (0) NA. (0
# Best perf. 6 0 4 #27 | 4 *3)
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int stack! 1;
int stack_pointer = 0;

void push(int* idx) {
stack[stack_pointer++] = *idx;

}

int* pop () {
int idx = stack[--stack_pointer];
return idx;

}

int decompileAction(int n, SWF_ACTION *actions) {
switch(actions|[n].ActionCode) {

case SWFACTION_GETPROPERTY:
decompileGETPROPERTY (n, actions);
break;
case SWFACTION_PUSH:
int* data = actions[n].data;
push (data) ;
break;

}
int decompileGETPROPERTY (int n,

int idx = pop();
getInt (idx); // Crashing function

SWF_ACTION *actions) {

}

Figure 6: Simplified code snippet relevant to CVE-2018-
20427.

cases where DAFL underperformed also have similar rea-
sons. For example, our slicing missed dump_dwarf_section
for CVE-2017-8396, which is related to the target location
via inter-procedural control dependency. In short, the limita-
tion of our slicing is that it sometimes fails to capture inter-
procedural control dependencies. As a result, DAFL may not
be able to recognize program behaviors that are crucial to
trigger the target bug.

Despite the current limitation, we can improve our system
by adopting better slicing techniques. To confirm this idea, we
manually identified the missed functions that play a crucial
role in the 4 CVEs where DAFL underperformed. Then, we
added these functions as our selective instrumentation target.
Consequently, we observed significant performance improve-
ments of DAFL in CVE-2018-20427, CVE-2019-9114, and
CVE-2017-14940 with the median TTE of 3802s, 16358s,
and 1812s, respectively. Furthermore, DAFL showed compa-
rable performance to the other tools for the remaining CVE: it
resulted in N.A.(2) for CVE-2017-8396. This result confirms
our hypothesis: better slicing will improve the performance
of DAFL.

In summary, the experimental results demonstrate that our
techniques can significantly improve the performance of di-
rected fuzzing. Note that we could not perform the Mann-
Whitney U test on the measured TTEs, since the fuzzers often
resulted in a timeout during the repeated experiments. Such a
timeout only tells that its TTE is longer than 24 hours, so this
result cannot be used as a sample for the Mann-Whitney U

Table 3: Slicing results for our benchmark. The Program
column indicates the name of the program. The # CVE col-
umn is the number of CVEs in the program. The All column
represents the number of all reachable functions in the pro-
gram. The Naive and Thin column is for the average number
of relevant functions sliced by the naive slicing and the thin
slicing, respectively.

Program # CVE All Naive Thin
swftophp 17 786 429 234
Irzip 2 154 112 77
cxxfilt 6 211 40 35
objcopy 3 1478 1184 891
objdump 5 1787 1347 875
strip 1 1485 3 3
nm 1 1306 1017 50
readelf 1 441 185 112
xmllint 3 2414 1215 416
cjpeg 2 101 52 43

test. Still, we believe that a median TTE computed from 40
repetitions already mitigates the randomness of fuzzing sig-
nificantly. We also observed several limitations in our static
analysis and slicing, but they can be orthogonally addressed
by techniques actively being developed in the static analy-
sis community. Thus, we leave it as future work to further
improve our static slicing part.

RQ1: DAFL shows the best performance for 27 out
of 41 cases, and reproduces crashes at least 1.93 times
faster on average than all the baseline fuzzers.

5.3 Impact of Thin Slicing

Recall from §4.1 that the thin slicing approach returns a
smaller set of dependent nodes than a naive one. To investi-
gate the impact of thin slicing, we additionally instantiated
DAFL with the naive slicing strategy, denoted as DAFL yyye.
We compared the performance of DAFL, DAFLyy ., and
AFL on 31 bugs in our benchmark where DAFL was able to
reproduce them in more than half of the repeated experiments.

Figure 7 shows the comparison results. Overall, both
DAFL and DAFLjygjv. outperformed AFL in most cases.
This is because both slicing strategies can effectively filter
out irrelevant functions. Table 3 in the appendix shows that
even the naive slicing can reduce the number of instrumented
functions by 57% on average while the thin slicing provides
more effective filtering by reducing the functions by 76% on
average.

When comparing DAFL and DAFL ., Wwe observed that
DAFL outperforms DAFLpyg;v. in most cases, and DAFL
was always more efficient than DAFLygj. in terms of
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Figure 7: Impact of thin slicing. T, denotes the static analysis time including the slicing time, and Ty denotes the fuzzing time.

Note that the Y axis is presented in log scale.

static analysis overhead: 2.04 times faster on average. The
static analysis overhead was particularly significant in CVE-
2017-8298: DAFL outperformed DAFL ;. even though
DAFLyyive could be faster than DAFL in terms of fuzzing
time. In total, DAFL reproduced the target crashes 2.01 times
faster than DAFLjy,;. on average. Furthermore, the N.A.
cases where AFL failed to report median TTEs, were com-
pletely resolved by DAFL, unlike DAFL .. The overall
results demonstrate that thin slicing provides more effective
guidance for directed fuzzing.

RQ2: Thin slicing improves the fuzzing performance
by 2.01 times on average compared to the naive ap-
proach.

5.4 Impact of Selective Coverage Instrumen-
tation & Semantic Relevance Scoring

In this section, we investigate how each of our two main
ideas affects the overall performance of directed fuzzing. To
this end, we instantiate the following two variants of DAFL:
1) DAFL e, which is the same as AFL but only employs se-
lective coverage instrumentation; and 2) DAFLg,rer, which
is the same as AFL but only employs semantic relevance scor-
ing. We compared the performance of DAFL to these variants
as well as the vanilla AFL on the same 31 bugs used in §5.3.

Figure 8 shows the results. Overall, each technique alone
clearly gives positive guidance to AFL, and the combined
use of them gives better results than either of them alone.
DAFLseipns; and DAFLg,,re are respectively 1.73 times
and 1.39 times faster than AFL. Note that even in the case
where one of our techniques cannot outperform AFL (e.g.,
DAFLg,mprer for CVE-2018-11225), using both techniques to-
gether help DAFL outperform AFL. This result demonstrates

the synergetic effect of those two techniques. When combined,
both techniques help DAFL to reproduce the bugs 1.93 times
faster than AFL on average. Furthermore, significant improve-
ments were made in 4 cases where AFL resulted in a timeout
for more than half of the repetitions. DAFL resolved all 4
of these cases, while DAFLg,,,sr and DAFLg,,.re; could not
when used individually.

We further investigated the impact of the subcomponents of
Semantic Relevance Scoring: seed pool management and en-
ergy assignment scheme. We instantiate the variants of DAFL
as follows: 1) DAFLg..4p001, Which is the same as AFL but
only employs our seed pool management; and 2) DAFLE¢rgy,
which is the same as AFL but only employs our energy as-
signment scheme.

Figure 9 shows the results. Overall, seed pool management
and energy scheduling both outperform AFL, each by 1.47
and 1.08 times on average, respectively. This result demon-
strates that both seed pool management and energy assign-
ment scheme are effective in improving the performance of di-
rected fuzzing. DAFLg,cqps01 and DAFLEj¢y not only out-
performs AFL separately, but is also synergistically combined
into DAFLgeger. While DAFLgeeqpoor and DAFLE,gy Te-
sult in timeout for 3 and 4 bugs, respectively, the combined
version, DAFLg,,g.; results in timeout for only 1 bug.

Finally, we compared the effectiveness of the energy
assignment scheme of DAFLE.ry to AFLGo. Note that
DAFLEyergy differs from AFLGo in that it uses data depen-
dency to assign energies for seeds, while AFLGo uses CFG-
based distance. When compared to AFLGo, DAFLgyergy re-
produced the target crashes 1.27 times faster on average. Note
that this comparison does not involve static analysis time in or-
der to directly compare the effectiveness of energy scheduling.
The comparison result demonstrates that energy scheduling
based on data dependency is more effective than the one based
on CFG distance.
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Figure 9: Impact of seed pool management and energy scheduling. Note that the Y axis is in log scale.

RQ3: Selective Coverage Instrumentation and Se-
mantic Relevance Scoring each improves the per-
formance by 1.73 and 1.39 times. When combined,
DAFL shows 1.93 times faster crash reproduction
results compared to AFL.

6 Discussion

Supporting Multiple Targets In the scope of this paper, we

focused on single-target directed fuzzing as in prior work [23,

32]. However, DAFL can be naturally extended to support
multiple targets. The underlying static analysis will be the
same as before; it will be performed only once for a given
program. Instead, the slicing part will be separately performed
for each target. Then, we can selectively instrument functions

in the union of the slices and generate a single binary program.

Also, the semantic relevance score would be calculated by
aggregating the scores from the individual slices (e.g., taking
the average). We leave this extension as future work.

Supporting Other Languages DAFL currently supports C
programs, but the underlying principle can be extended to
support other languages. The effectiveness of thin slicing [57]
was originally demonstrated with Java and there are a large
body of work that apply program slicing to object-oriented
programs [2,6,33,48]. By adopting such techniques, we be-
lieve that DAFL can be extended to support object-oriented
languages. However, there may exist challenges in other lan-
guages with more complex features such as C++. The dy-
namic nature of C++ often causes the pointer analysis to be
imprecise in practice [37,38]. This imprecision can lead the
slicing results to either lack important functions or include un-
necessary functions. We leave these challenges for supporting
other languages as future work.

7 Threats to Validity

Although we carefully designed the evaluation criteria such as
our bug triage logic (§5.1), they may not be exactly the same
as the existing work. As mentioned in §1, it is exceedingly



difficult to replicate their settings in the absence of detailed
information. In order to mitigate the threat, we have commu-
nicated with the authors and carefully configured the settings
to reproduce the partial results from the prior work.

The performance of fuzzers may vary due to the exper-
imental environment, such as the versions of the baselines
and underlying compiler toolchains. Since different tools are
based on different versions of software, we commonly set up
the main components with the latest versions. This change
may introduce discrepancies in the results. For example, one
might wonder why Beacon is less effective than AFLGo in
most cases, contrary to the reported performance in the pa-
per. One reason is that we used the latest version of AFLGo
which is more effective than the old version used in the Bea-
con paper. We also used LLVM 12 while the Beacon paper
used LLVM 4. This might have an impact on the performance
of AFLGo because AFLGo relies on the control flow graph
generated by the LLVM compiler.

Due to the inherent randomness posed by fuzzing, our ex-
perimental results can have significant fluctuations. To reduce
the effect, we repeated all our experiments 40 times and re-
ported the median values.

8 Related Work

Fuzzing, especially Grey-box fuzzing [8,24,41] has become
a critical method to discover bugs in real-world software
such as parsers [44], web browsers [28, 61], network proto-
cols [26,36], autonomous driving cars [35], mobile apps [39],
and OS kernels [19, 34, 52]. However, generating a test case
for a particular bug in a program remains challenging. Di-
rected Grey-box Fuzzing (DGF) tackles the challenge by
favoring test cases that can exercise nodes closer to the target
node in the Control-Flow Graph (CFG). AFLGo [9] is one
of the earliest directed fuzzers leveraging this idea. Similarly,
Hawkeye [15] and WindRanger [23] improve upon AFLGo
to provide more informative feedback to precisely compute
distances. ParmeSan [47] considers sanitizer-guided bug cov-
erage in addition to the distance feedback. FuzzGuard [64]
also enhances AFLGo by leveraging deep learning to filter
out irrelevant test cases. Likewise, TargetFuzz [13] comprises
a target-oriented seed corpus to enhance the effectiveness of
AFLGo. MC? [55] takes a unique approach that leverages bi-
nary search rather than mutation to generate more promising
inputs toward the target. Note that all these fuzzers rely on a
distance-based mechanism, which suffers from the precision
problem, and DAFL is the first in tackling it.

There exist DGF approaches that aim to improve efficiency
by transforming the program itself. Beacon [32] and Sieve-
Fuzz [58] aggressively prune off irrelevant paths on runtime
by modifying the program under test. However, DAFL is
orthogonal to these approaches, as it can distinguish not only
irrelevant and relevant paths but less relevant and more rele-
vant paths as well.

Directed White-box Fuzzing, or Directed Symbolic Exe-
cution (DSE) [40], is a predecessor of DGF, which views
the target-reaching problem as a constraint satisfaction prob-
lem. It has been used for various purposes such as patch
testing [43,49] and verification of static analysis reports [21].
More recently, directed hybrid testing was proposed to com-
bine symbolic execution and fuzzing [17]. However, these
approaches rely on symbolic execution [11,27,53], which is
orthogonal to our approach.

There have been numerous data-flow-guided fuzzers [14,
16, 18,25, 47,50]. However, semantic relevance scoring is
unique in that it uses a data-flow analysis to compute relative
distances between program executions, which will then be
used for driving fuzzers toward buggy lines of code. Notably,
GREYONE [25] employs dynamic taint analysis to guide the
mutation process and prioritize seeds. However, its dynamic
analysis deals with a single execution path at a time, whereas
our static analysis examines the whole program without con-
crete executions. This allows DAFL to guide fuzzing toward
an unreached target location.

Static analyses often help improve the performance of
fuzzers. DGF calculates seed distances by statically analyzing
the control-flow of the target program [9]. Shastry et al. [56]
automatically generate a dictionary of inputs for a target
program based on static analysis. NTFuzz [19] leverages
a static type inference technique to guide kernel fuzzing. Ver-
iFuzz [20] uses static analysis to transform the loops in the
program to be fuzzed more easily. Furthermore, it determines
the range of valid inputs with interval analysis. DDFuzz [42]
and DATAFLOW [30] introduces a new feedback system, by
receiving feedback not only from discovering a new control-
flow edge, but also from discovering a new data-flow edge.
They perform intra-procedural program analysis to obtain
such data-flow graph. Unlike these works, we selected only
the data-flow edges that are relevant to the target bug. For
this, DAFL must perform inter-procedural data-flow analysis
to collect all the relevant def-use chains across the function
boundaries. Moreover, we further process the obtained def-
use chains to compute the semantic relevance scores of seeds.

Our approach uses thin slicing [57] to identify relevant
parts of the program to the target location. Unlike traditional
static program slicing [60, 62], thin slicing only includes pro-
ducer statements that define non-pointer values, in our context.
Since fuzzers typically attempt to mutate non-pointer values,
thin slicing results provide concise yet useful guidance to the
target locations. We demonstrated that thin slicing is more
effective than traditional approaches for directed fuzzing.

9 Conclusion

We presented DAFL, a new directed grey-box fuzzer. We ad-
dressed two technical challenges in DGF. First, code coverage
can give negative feedback to fuzzers when they exercise irrel-
evant paths to the target point. Second, syntactic distance met-



rics can mislead fuzzers when complicated control flows, such
as loops, are involved. Our idea is to selectively receive cover-
age feedback only from the relevant parts to the target buggy
location and prioritize seeds based on the semantic relevance
score defined on the Def-Use Graph. Our empirical results
show that DAFL significantly outperforms existing state-of-
the-art directed fuzzers, including AFLGo, WindRanger, and
Beacon.
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